首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8993篇
  免费   797篇
  国内免费   1086篇
  2023年   122篇
  2022年   139篇
  2021年   201篇
  2020年   270篇
  2019年   280篇
  2018年   259篇
  2017年   286篇
  2016年   306篇
  2015年   287篇
  2014年   337篇
  2013年   510篇
  2012年   351篇
  2011年   343篇
  2010年   315篇
  2009年   371篇
  2008年   474篇
  2007年   502篇
  2006年   436篇
  2005年   411篇
  2004年   398篇
  2003年   431篇
  2002年   339篇
  2001年   340篇
  2000年   280篇
  1999年   285篇
  1998年   244篇
  1997年   253篇
  1996年   201篇
  1995年   169篇
  1994年   160篇
  1993年   153篇
  1992年   166篇
  1991年   124篇
  1990年   139篇
  1989年   111篇
  1988年   140篇
  1987年   91篇
  1986年   92篇
  1985年   99篇
  1984年   105篇
  1983年   56篇
  1982年   52篇
  1981年   57篇
  1980年   55篇
  1979年   24篇
  1978年   22篇
  1977年   30篇
  1976年   15篇
  1974年   13篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
941.
The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance.  相似文献   
942.
943.
选择了北京市环境PM_(2.5)浓度不同的两个采样点的毛白杨(Populus tomentosa Carr.)作为研究对象,利用环境扫描电镜及X-射线能谱仪对杨树叶片表面滞留的PM_(2.5)颗粒进行了观察、统计和成分分析,并研究了叶片气孔对环境颗粒物污染的适应性变化。结果表明:夏秋两季西直门叶片样品上下表面的PM_(2.5)数量均多于森林公园样品这说明环境PM_(2.5)浓度是影响叶片表面滞留颗粒物数量的主要原因;其中叶片上表面是滞留PM_(2.5)颗粒的主要区域。森林公园样品中PM_(2.5)颗粒性质比较单一,硅铝酸盐颗粒和石英颗粒占很大比例,二者的主要来源均为天然源,如土壤扬尘、矿物颗粒等;而西直门采样点叶片样品滞留的PM_(2.5)颗粒的元素组成更为复杂,其中50%以上的硅铝酸盐颗粒检测出了明显的铜、钾、氯、钠等元素的谱峰其来源主要是工业排放;西直门样品PM_(2.5)的含硫量高于森林公园样品,且夏季明显高于秋季。研究还发现有少数PM_(2.5)颗粒进入了毛白杨叶片的气孔而且不同污染程度下气孔的形态特征存在差异。与森林公园毛白杨叶片的气孔相比,西直门处的毛白杨叶片气孔的长度、宽度、面积和气孔密度均较小,说明较高的PM_(2.5)污染程度对毛白杨叶片的形态发育有一定影响。研究结果可以为揭示植物叶片阻滞、吸收大气颗粒污染物的机制、合理选择和优化城市绿化树种从而改善空气质量提供一定的科学理论依据。  相似文献   
944.
采用悬液定量杀菌试验,对苯扎溴铵与艾叶水提物的协同杀菌效果进行了实验室研究。研究发现,0.1%苯扎溴铵与艾叶水提物混合溶液对金黄色葡萄球菌、大肠埃希菌、枯草芽胞杆菌、白假丝酵母菌和黑曲霉均呈现出显著的协同杀菌作用。结果表明,苯扎溴铵与艾叶水提物具有良好的协同杀菌效果。  相似文献   
945.
以不同生境的五柱绞股蓝为材料,对4个不同来源的五柱绞股蓝的叶片性状、裂叶数进行了统计,并以芦丁为对照品,采用分光光度法对4个居群五柱绞股蓝的总黄酮含量进行了测定。结果表明,五柱绞股蓝的叶型变异较大,其复叶具有3-9裂叶型类型,以7裂叶型和5裂叶型为主。相关性统计显示,野生型五柱绞股蓝黄酮含量高,与7裂叶型极显著相关,家种型五柱绞股蓝黄酮含量低,与叶型无关,环境因子可能是影响其黄酮含量的主要因子。在引种时,7裂叶型的五柱绞股蓝可作为优选资源引用。  相似文献   
946.
A new species of Noblella is described from the humid montane forest of the Región Cusco in Peru. Specimens were collected at 2330–2370 m elevation in Madre Selva, near Santa Ana, in the province of La Convención. The new species is readily distinguished from all other species of Noblella by having a broad, irregularly shaped, white mark on black background on chest and belly. The new species further differs from known Peruvian species of Noblella by the combination of the following characters: tympanic membrane absent, small tubercles on the upper eyelid and on dorsum, tarsal tubercles or folds absent, tips of digits not expanded, no circumferential grooves on digits, dark brown facial mask and lateral band extending from the tip of the snout to the inguinal region. The new species has a snout-to-vent length of 15.6 mm in one adult male and 17.6 mm in one adult female. Like other recently described species in the genus, this new Noblella inhabits high-elevation forests in the Andes and likely has a restricted geographic distribution.  相似文献   
947.
Measuring chlorophyll fluorescence and P700 absorbance has been widely used to study photosynthesis in both terrestrial plants and algae. However, in order to apply these measurement techniques to study microalgae, a concentrated suspension of algae, which is usually prepared by centrifugation, is required. In this study, instead of using centrifugation, we concentrated microalgae on a nitrocellulose membrane using filtration to create an ‘artificial leaf’ before analysis. Overall, we were able to generate values of the appropriate photosynthetic parameters that were comparable to those obtained when chlorophyll fluorescence and P700 absorbance were measured following centrifugation. There were no statistically significant differences (P > 0.05) between the artificial leaf method and the traditional cuvette method for determining chlorophyll fluorescence or P700 absorbance at appropriate chlorophyll concentrations. We were also able to reduce background noise by using a filter membrane as a carrier. Therefore, an artificial leaf has the potential to be a valuable tool for phycologists interested in studying microalgal photosynthesis by enabling them to eliminate tedious centrifugation steps. In addition, fluorometers commonly used for studying the leaves of higher plants will also be suitable for studying microalgae.  相似文献   
948.
There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought‐resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space‐for‐time substitution, common garden experiment with 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as ‘cool/moist’, ‘moderate’, or ‘warm/dry’) to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought‐resistance, (ii) the patterns of genetic variation are related to the native source‐climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought‐resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpirationmin), water deficit (% below turgid saturation), and specific leaf area (SLA, cmg?1) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought‐resistance (i.e., lower transpirationmin, water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought‐resistance across all test sites. Multiple regression analysis indicated that Douglas‐fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future.  相似文献   
949.
Recent studies have revealed large unexplained variation in heat requirement‐based phenology models, resulting in large uncertainty when predicting ecosystem carbon and water balance responses to climate variability. Improving our understanding of the heat requirement for spring phenology is thus urgently needed. In this study, we estimated the species‐specific heat requirement for leaf flushing of 13 temperate woody species using long‐term phenological observations from Europe and North America. The species were defined as early and late flushing species according to the mean date of leaf flushing across all sites. Partial correlation analyses were applied to determine the temporal correlations between heat requirement and chilling accumulation, precipitation and insolation sum during dormancy. We found that the heat requirement for leaf flushing increased by almost 50% over the study period 1980–2012, with an average of 30 heat units per decade. This temporal increase in heat requirement was observed in all species, but was much larger for late than for early flushing species. Consistent with previous studies, we found that the heat requirement negatively correlates with chilling accumulation. Interestingly, after removing the variation induced by chilling accumulation, a predominantly positive partial correlation exists between heat requirement and precipitation sum, and a predominantly negative correlation between heat requirement and insolation sum. This suggests that besides the well‐known effect of chilling, the heat requirement for leaf flushing is also influenced by precipitation and insolation sum during dormancy. However, we hypothesize that the observed precipitation and insolation effects might be artefacts attributable to the inappropriate use of air temperature in the heat requirement quantification. Rather than air temperature, meristem temperature is probably the prominent driver of the leaf flushing process, but these data are not available. Further experimental research is thus needed to verify whether insolation and precipitation sums directly affect the heat requirement for leaf flushing.  相似文献   
950.
It has been estimated that the energy captured in one hour of sunlight that reaches our planet is equivalent to annual energy production by human population globally. To efficiently capture the practically inexhaustible solar energy and convert it into high energy density solar fuels provides an attractive ‘green’ alternative to running our present day economies on rapidly depleting fossil fuels, especially in the context of ever growing global energy demand. Natural photosynthesis represents one of the most fundamental processes that sustain life on Earth. It provides nearly all the oxygen we breathe, the food we consume and fossil fuels that we so much depend on. Imitating the reactions that occur at the early stages of photosynthesis represents the main challenge in the quest for construction of an efficient, robust, self-renewing and cost-effective ‘artificial leaf’. In this review we summarize the main molecular features of the natural solar energy converters, photosystem I and photosystem II, that allow them to operate at high quantum efficiencies, and thus inspire the smart matrix design of the artificial solar-to-fuel devices. We also discuss the main challenges that face the field and overview selected recent technological advances that have tremendously accelerated the race for a fully operational artificial leaf that could serve as a viable alternative to fossil fuels for energy production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号